Feature Ecologys megaproblem

first_imgBut NEON board chair Collins acknowledges that the project’s checkered history means it has a lot of ground to make up. “It still needs to prove itself to the community,” he says. Email The disturbing news was a harbinger of worse to come. Despite his impressive title of observatory director, Ollinger discovered that he had little influence over how NEON was being built, or the day-to-day activities of its growing scientific staff. Soon, “the number of decisions I tried to make that were overruled reached a point where I felt there was no way I could succeed,” he recalls. Frustrated and feeling powerless, Ollinger returned home after less than a year.Ollinger’s experience reflects management problems that have dogged NEON since its birth and the project’s tense relationship with the community of scientists who will ultimately use its data. This summer those problems came home to roost.SIDEBAR: NEON jobs plentiful but problematicGetting a job in ecology can be tough, but the National Ecological Observatory Network (NEON) arguably has been hiring more ecologists than anyplace else; its workforce topped some 400 permanent and 100 summer employees earlier this year. But NEON’s disarray has led to high turnover and taken a toll on promising careers.Elizabeth Webb was hired in 2014 to manage field sampling protocols and sensors at a NEON site just outside Gainesville, Florida. Webb had worked with similar instruments in Alaska while earning her master’s degree in biology, and thought her new job “would be a great opportunity to learn new things with a different setup.”Instead, Webb says, her bosses discouraged her from showing any initiative or using her knowledge to help the fledgling project. “Someone without a college education could have done my job,” she says. For example, Webb says it took a month and several sign-offs to get approval to remove a wasp’s nest hanging from the site’s flux tower. In contrast, Webb says that she could have solved the problem with bug spray from Home Depot.Webb quit after 5 months and now works as an outreach and facilities coordinator at the National High Magnetic Field Laboratory in Gainesville. “I really like the idea of NEON, but it’s not working,” she says. Webb “was one of my best students,” says ecologist Edward Schuur, a one-time NEON adviser who recently moved to Northern Arizona University, Flagstaff. “If NEON can’t retain people of her caliber, then something is seriously wrong with the organization.”Todd Dawson, chair of NEON’s top scientific advisory panel, goes further. “I wouldn’t encourage a young person to apply for a NEON job now,” says the University of California, Berkeley, academic. “It’s a sad commentary. But I want to know their plans for righting the ship, and then see some real progress in achieving them, before I would advise anyone to work there.” On 3 August, NSF abruptly announced it was scaling back the project in an attempt to prevent an 18-month slip in its schedule and a projected cost overrun of more than $80 million on its $434 million construction budget (Science, 7 August, p. 574). On 8 September, NEON Inc., the nonprofit that manages the project, fired CEO Russ Lea, a former forestry professor and university administrator, after the head of NSF’s biology directorate, James Olds, ordered the corporation to correct “deficiencies in leadership.” And last week Olds told a congressional committee investigating what has gone wrong that NSF would consider replacing NEON Inc. if it doesn’t shape up.NSF officials say NEON’s “descoping” was prompted by ongoing difficulties in obtaining needed site permits and technical challenges in building NEON’s sensors, some of which take novel approaches to collecting data. NEON’s supporters note that other large, complex science projects that NSF has built have undergone periodic changes in scope and leadership, particularly as they transition from construction to operations. And NEON has been especially challenging because of its complexity and uniqueness, Olds says. But scientists both inside and outside of NEON say the project’s woes run much deeper. They point to a chronic disharmony among NSF, NEON Inc., and the research community. Ollinger, for instance, is one of five researchers who has held—and then left—NEON’s top scientific post since 2007. This past spring, members of NEON’s chief scientific advisory body even considered a mass resignation.Now, as NEON regroups, the scientists with whom it has had a love/hate relationship say NSF and NEON Inc. need to turn things around, and fast. “I wish them luck,” says Scott Collins, a plant biologist at the University of New Mexico, Albuquerque, who helped get NEON off the ground as an NSF program manager in the early 2000s. “They need to wake up and change the way NEON operates and get the research community behind the project,” he says. “NSF has invested a ton of money in the infrastructure,” he adds, “and if NEON fails, ecology won’t get another chance.”WHEN THEN-NSF DIRECTOR Rita Colwell proposed what became NEON in 2000, she hoped that it would generate questions researchers had never been able to ask—or answer. Although the agency had been funding Long-Term Ecological Research sites across the United States since 1980, those projects tended to focus on hypothesis-driven research by an individual investigator. They weren’t designed to collect and share highly standardized, continental-scale data over many decades.The move into Big Data is an intoxicating vision to many. “The idea of a community of ecologists coming together to put up a piece of infrastructure as significant as a telescope, atom smasher, or an icebreaker sucked me in,” Lea said last month, explaining why he took the CEO job in early 2012.It took NEON’s planners a decade and several tries, however, to draw a blueprint acceptable to NSF’s oversight body and Congress. The final plan called for dividing the United States into 20 ecological domains (see map). Each domain would host two “core” observing stations chock-full of standardized sensors and sampling sites (see graphic). One core site would focus on a terrestrial ecosystem such as a forest or grassland, the other on an aquatic environment such as a stream or lake. In addition, the domains would support a total of 56 “relocatable” stations that researchers could move a few times during the 30-plus years that NEON is expected to operate. The original plan also included a long-term experiment, called STREON (STReam Experimental Observatory Network), which would simulate abrupt environmental change in aquatic ecosystems by adding nutrients—phosphates and nitrogen—and removing some organisms at 10 sites.Since 2011, project managers have completed construction on 48 sites—fewer than half of what was in the original plan—and spent approximately two-thirds of NEON’s construction budget. The descoping preserves the 40 core sites, but eliminates 15 of the 56 relocatable sites—including seven dedicated to studying urban ecosystems. NEON also pulled the plug on two terrestrial instruments: sensors to measure fluxes of nitrogen oxides and methane, and fiber optic cables for collecting video of underground root growth. And it dropped the STREON experiment (although NSF officials emphasized that they would welcome new STREON-like proposals to another NSF funding program).The loss of STREON was the latest defeat for aquatic scientists, who had long been unhappy with what they regarded as NEON’s inattention to its river and lake sites. In June, several prominent scientists petitioned NEON to invest more in completing the aquatic observatories. Sensing that STREON was in danger, they also asked to be consulted on any decision to drop STREON.NEON managers rebuffed both requests, saying that “we cannot make one component of the observatory a higher priority than others.” But the descoping does exactly that, argues ecologist Walter Dodds of Kansas State University, Manhattan, who organized the petition and who has championed STREON. “It’s terrible news for aquatic scientists.”IT’S NOT UNUSUAL for a federal agency to adjust its plans for a major scientific facility, such as a telescope or spacecraft, after construction is underway. But those changes are usually the product of discussions between scientists and project managers. On a typical NASA mission, for instance, “the job of the chief scientist is to understand the high-level science requirements of the mission and to engage in respectful conflict with the project manager to make sure that the best outcome occurs,” says David Schimel, NEON’s first CEO and later its first chief scientist. “They succeed or fail together.”That give-and-take has not been the norm at NEON, Schimel and others say. In late 2007, for example, geophysicist Michael Keller left his job as a project scientist for a NASA-funded program in the Amazon, bought a house in Boulder, and moved his family in preparation for what he expected to be the crowning achievement of his career: chief of science at NEON. “We had a golden dream that was going to make this incredibly difficult thing happen,” he recalls. “That idealism was our calling card.”Keller’s first task was to reach a consensus on the scientific requirements for the observatory. “Then we converted those questions into what we were going to measure and how we would report them as products” that scientists could use, he says. The result, he says, was “a very respectable final design.”That’s when things headed south. “We fully expected to have to adapt what we were doing on a site-by-site basis,” Keller recalls. But that’s not how NSF saw things. “NSF’s model is that you do the science up front,” he says. “And once you come up with the final design, it’s up to the project manager to execute it.” The message from NSF was clear, he says: “Once we had designed it, [scientists] were somewhat obsolete.”Ollinger says that approach may work well when building a single large facility with a clear and compelling scientific objective—he calls it a “north star”. But NEON lacks that north star, he says. Instead, its fundamental objective is to generate high-quality data that scientists will use to answer a wide array of questions.After about 3 years at NEON, Keller “decided it was probably time for me to move on.” In late 2010 he returned to Brazil to manage a sustainable development project funded by the United States and Brazilian governments.Keller was succeeded by the man who had hired him: Schimel. A biogeochemist who has been a tireless advocate for NEON, Schimel initially tried to recruit people who understood both ecology and what it takes to build a large scientific facility—before realizing that those two cultures rarely overlap. “It was difficult to find ecologists with experience in large projects,” Schimel says. “It was equally hard to find engineers and project managers with experience in ecology. And by difficult I mean impossible—they didn’t exist.”Even so, Schimel says he’s proud of the team he assembled during his 5 years at NEON. But eventually he was also pushed aside. “My science role was being increasingly marginalized,” he recalls. “I was losing the authority and access to the systems engineering staff and other expertise I needed to do my job.” Schimel left NEON in 2012 to join NASA’s Jet Propulsion Laboratory in Pasadena, California, where he’s analyzing global carbon data.Next up was Ollinger, whose year at NEON was equally disheartening. Ollinger found out that he didn’t have the promised authority to make sure that sensors passed muster before they went live at a site. Nor was he allowed to create career paths for NEON’s growing staff of scientists, who could never get a straight answer from project managers about whether they would continue to have jobs once NEON was running (see sidebar, p. 1441). A third role that Ollinger relished—figuring out how outside scientists would access NEON’s data—was impossible to fulfill, he says, because “the data weren’t flowing.”Ollinger’s successor as observatory director, C. J. Loria, lasted just 4 months. A former Navy test pilot hired for his business acumen, Loria was ousted this past winter at the same time that NEON Inc. eliminated the position of observatory director.The churn has deepened the rift between scientists and the project by creating a “lack of a scientific presence” at the Boulder headquarters, Lea admitted before his departure. “The community wants a mano-a-mano relationship with a strong scientific leader at NEON on a daily basis,” he said. “Scientists want to talk to their peers.”Lea’s interim replacement as CEO is Eugene Kelly, a soil scientist at Colorado State University, Fort Collins, who only this summer was hired to be NEON’s visiting chief scientist. Kelly agrees that the research community “feels it has been kept in the dark about NEON for many years.” The low point in NEON’s relationship with the ecology community may have come this past winter, when members of its principal advisory panel, the Science, Technology and Educational Advisory Committee (STEAC), seriously considered disbanding the group.STEAC “made several explicit recommendations over the years, and those recommendations were either ignored or opposed,” explains the panel’s chair, integrative biologist Todd Dawson of the University of California, Berkeley. “People were saying, ‘There’s no point having an advisory committee if [NEON] is not going to use it.’”James Collins, chair of NEON’s board of directors, agrees that top management has historically shown a disregard for what scientists can bring to the project, and says that attitude must change. A biology professor at Arizona State University, Tempe, who helped get NEON off the ground as head of NSF’s biology directorate in the late 2000s, Collins says the board expects the next CEO to take a different approach. “The CEO has to set a tone in which people feel they are being treated well and their contributions are valued,” he says.Relations between NEON Inc. and NSF also need to improve, say scientists both within and outside the project. The funding delay that sabotaged Ollinger, for example, was the result of a festering disagreement over when a site is ready to be commissioned.It’s not a minor issue. NEON managers argue that a site should be considered operational once all the equipment works and the instruments start to generate data. Any delay in commissioning, they note, forces NEON to use construction dollars for operating costs, such as power and maintenance. That leaves less money to complete new sites.NSF’s position, however, is that a site cannot be commissioned until its data are available online, says Elizabeth Blood, the agency’s longtime project manager for NEON. That process could add months to the commissioning process, she concedes, adding that NSF has no intention of changing its criteria.NSF has the authority to decide the issue. But NEON’s position got a strong endorsement this past July from a high-powered panel of scientists from both inside and outside the project, which reviewed NEON’s future shortly before NSF announced the descoping. Some of NEON’s cost overruns were due to “delayed transition to operations,” the panel concluded. Its recommendation was unequivocal: “The cost of carrying field operations on the construction project is unjustified,” and NSF needed to start paying the operating costs.Even NEON’s critics are willing to cut NSF some slack, however, because they recognize that the foundation has little political margin for error. The Republican-led science committee in the U.S. House of Representatives has repeatedly questioned whether NSF has been a proper steward of taxpayer dollars, and NEON’s missteps have provided some ammunition for those attacks. In recent months the committee has held hearings to berate NSF officials for allowing NEON Inc. to use $150,000 of its management fees on what the agency later admitted were inappropriate activities, including a Christmas party.Last week, the panel grilled the agency on its oversight of the entire project, and Olds made it clear that the corporation is on shaky ground. “By December 1 NSF will have enough information to make a determination as to whether NEON Inc. has made sufficient improvement to successfully complete construction,” Olds told the panel. Pressed by one legislator whether that could mean replacing the current contractor, Olds hemmed and hawed before concluding, “Yes, that is an option.”NSF has already shortened the leash. Olds said NSF is taking a closer look at the project’s financial books, and an advisory committee to the biology directorate is examining whether the descoping will affect NEON’s scientific goals. The National Science Board, NSF’s oversight body, has formed a NEON task force. Olds was also critical of NSF’s performance to date. “We could have done a better job,” he admitted.DESPITE ITS MANY problems, NEON has made considerable progress. Managers said last month that 33 sites in 15 domains are now ready for operations. By September 2016, Lea predicts it will have “upward of 60% of final capability” at the 81 sites currently planned. The final goal, he says, is “100% of capability by the end of 2017.”Getting to 100%, however, will require NEON to fully resolve longstanding permitting problems. NEON doesn’t own any of its sites, so before it can do any work it must obtain the permission of the landowner—whether a federal or state agency, an environmental nonprofit, a university, or private individuals. Construction also has to go through numerous environmental reviews. It all has taken much longer than anyone anticipated. “We’ve needed probably five to 10 times more permits than was originally thought,” Lea says. “It’s become a huge drain on time and resources.”STREON posed an especially high permitting hurdle that NEON never cleared. “Dropping pollutants into a reach of streams for 30 years was a hard thing for most people to swallow,” Lea says.NEON officials also have had to deal with everything from protests by local residents to a pair of murders that ultimately doomed an urban site in Puerto Rico (see below). In Hawaii and Alaska, the permitting process has been so problematic that this past summer NSF officials proposed dropping those two states, plus Puerto Rico, from NEON. Scientists reacted with horror, pointing out that Hawaii alone provides 25% of the climate variability across NEON sites and that, together, the three locales double the amount of biodiversity being monitored. The idea, which NSF’s Blood says was simply a trial balloon, was eventually abandoned.SIDEBAR: Tragic end for Puerto Rico siteFor many of the National Ecological Observatory Network’s (NEON’s) 80-plus monitoring sites, getting the necessary permits to begin construction was the biggest hurdle. But one site in Puerto Rico was undone by tragedy.This past spring, two security guards were gunned down at what was to have been a “relocatable,” or movable, site in a village near Ponce. In June, NEON took down the nearly complete installation after deciding that the site, known as Mameyes, was too dangerous.“The community said they wanted us to stay, but they couldn’t guarantee our safety,” says Russ Lea, who this month stepped down as NEON’s CEO. “They haven’t captured those responsible for the murders … so … the decision was clear.”The local contractor had hired armed guards after construction material started disappearing from Mameyes, making it NEON’s only guarded site. In the predawn hours of 30 April, the guards were shot dead. Local authorities have declined to discuss the status of the investigation.Although it pales next to the human tragedy, Lea says shuttering Mameyes meant abandoning a site that had required incredible resourcefulness by NEON managers. After a landslide in 1985 killed 130 people and destroyed the barrio, the remaining houses were bulldozed, and a dry forest grew up through the rubble. That history posed a special challenge to those installing the tower and monitoring equipment.“The engineering skill needed to put that urban site into a rubble field, and not disturb the key environmental components, is a testament to what NEON is capable of achieving,” Lea says. “And then having to pull it all out—it breaks me up just to think about it.” There’s also a loss to science, as Mameyes represents a unique ecosystem within an urban setting. The descoping offers outside scientists a golden opportunity to reconnect with the project, Kelly says. Last month the Ecological Society of America issued a supportive letter from 16 present and past presidents. “We remain excited about the potential new science that could emerge” from NEON, they wrote, asking NSF and NEON Inc. “to re-engage with the ecological community.” NEON will be trapping beetles at many sites. Click to view the privacy policy. Required fields are indicated by an asterisk (*) Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Sign up for our daily newsletter Get more great content like this delivered right to you! Country More than a decade ago, ecologist Scott Ollinger helped launch U.S. ecology’s flagship foray into big science. He and other researchers worked to transform the National Science Foundation’s (NSF’s) dream of a continental-scale observatory that would monitor environmental change into a concrete plan. What emerged was the National Ecological Observatory Network (NEON), a unique string of more than 100 data collection stations spread from Alaska to Puerto Rico.So Ollinger was thrilled when, in 2013, NEON offered him the chance to oversee the network’s expected trove of data on long-term changes in climate, land use, biodiversity, and invasive species. He arranged for a 3-year leave of absence from his post at the University of New Hampshire in Durham. Then he hit the road to NEON’s headquarters in Boulder, Colorado.En route, however, Ollinger learned that NSF, which is paying for NEON, had put a hold on an initial $111 million grant to begin operating some of the newly built stations.  That meant “I was almost fired the day I arrived,” he says. NEON INC. last_img read more

Read More »